Formules explicites:

U_n en fonction de n et de U_p .

Il y a n étapes pour aller directement de U_0 à U_n :

$$U_n = U_0 + n \times r$$

Suites géométriques :
$$\times q$$

$$U_n = U_0 \times q^n$$

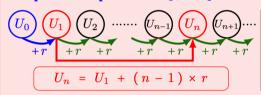
 \wedge

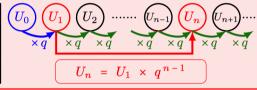
Répéter la même multiplication = obtenir une puissance.

Que se passe - t - il si le terme initial est U_1 ?

On perd l'étape entre U_0 et U_1 .

Il reste donc (n-1) étapes jusqu'à U_n .





Généralisation:

Il y a (n-p) étapes pour aller de U_p à U_n .

$$U_n = U_p + (n-p) \times r$$

$$U_n = U_p \times q^{n-p}$$

Exercices:

Soit (U_n) la suite arithmétique de premier terme $U_3 = 120$ et de raison r = 35.

- 1) Pour tout entier naturel n, exprimer U_n en fonction de n.
- 2) Donner alors la valeur de U_{10} .

Soit (U_n) la suite géométrique de premier terme $U_2 = 52$ et de raison q = 2.

- 1) Pour tout entier naturel n, exprimer U_n en fonction de n.
- 2) Donner alors la valeur de U_{10} .

Correction:

1) Pour tout entier $n \ge 3$,

$$U_n = U_3 + (n-3) \times r$$

$$U_n = 120 + (n-3) \times 35$$

$$U_n = 120 + 35 n - 105$$

$$U_n = 15 + 35 n$$

2) On substitue n par 10:

$$U_{10} = 15 + 35 \times 10$$

$$U_{10} = 365$$

1) Pour tout entier $n \ge 2$,

$$U_n = U_2 \times q^{n-2}$$

$$U_n = 52 \times 2^{n-2}$$

$$U_n = 52 \times \frac{2^n}{2^2} = \frac{52}{4} \times 2^n$$

$$U_n = 13 \times 2^n$$

2) On substitue n par 10:

$$U_{10} = 13 \times 2^{10}$$

$$U_{10} = 13 \ 312$$