Les suites géométriques :

Formule de la somme.

Rappel d'un résultat précédent :

La somme des premières puissances

Pour tout entier
$$n \ge 0$$
,
$$\sum_{k=0}^{k=n} q^k = 1 + q + q^2 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$$

Calculons la somme de termes consécutifs d'une suite géométrique :

Soient (U_n) une suite géométrique de raison $q \neq 1$ et n un entier positif.

$$S_{n} = U_{0} + U_{1} + U_{2} + \dots + U_{n} = \sum_{k=0}^{k=n} U_{k}$$

$$\mathbf{Or pour tout entier } k \ge 0, \qquad U_{k} = U_{0} \times q^{k}$$

$$= U_{0} \times 1 + U_{0} \times q + U_{0} \times q^{2} + \dots + U_{0} \times q^{n} = \sum_{k=0}^{k=n} U_{0} \times q^{k}$$

$$= U_{0} \times (1 + q + q^{2} + \dots + q^{n}) = U_{0} \times \left(\sum_{k=0}^{k=n} q^{k}\right)$$

$$S_{n} = U_{0} \times \frac{1 - q^{n+1}}{1 - q}$$

Conclusion:

Somme =
$$(1^{er} \text{ terme}) \times \frac{1 - q^{\text{(nbr. de termes)}}}{1 - q}$$

Que se passe - t - il si la somme commence à k = p ?

Soient n et p deux entiers positifs tels que : $p \le n$.

$$\sum_{k=p}^{k=n} U_k = U_p \times \frac{1 - q^{n-p+1}}{1 - q}$$

Pour tout entier $k \ge p$, on a :

$$U_k = U_p \times q^{k-p}$$

$$\sum_{k=p}^{k=n} U_k = \sum_{k=p}^{k=n} \frac{U_p}{V_p} \times q^{k-p} = \frac{U_p}{V_p} \times \left(\sum_{k=p}^{k=n} q^{k-p}\right)$$

Comment allons - nous faire pour que notre somme commence à k = 0 ?

En réalisant ce qu'on appelle un changement d'indice : k' = k - p

$$\sum_{k=p}^{k=n} U_k = U_p \times \left(\sum_{k'=0}^{k'=n-p} q^{k'} \right) = U_p \times \frac{1 - q^{n-p+1}}{1 - q}$$

 \mathbf{CQFD}